Your business, our energy

Products and solutions for business and customers Italy and abroad


Get around town easily

Live the city with Eni's car-sharing service



The supercomputer we use to research new sources of energy: one of the most powerful and sustainable computing system in the world.


HPC5 is a set of parallel computing units with a peak processing power of 51.7 petaFlops. Combined with the supercomputing system in operation since 2018 (HPC4), the peak computational capacity of the infrastructure totals 70 petaFlops: that is, 70 million billion mathematical operations performed in a single second. Its full name is High Performance Computing - layer 5. It is our latest-generation supercomputer. According to the TOP500 list, HPC5 is the sixth most powerful supercomputer in the world, the highest ranked in Europe and the overall leader among non-governmental systems. It is also among the greenest, with one of the lowest levels of electricity consumption per Petaflop/s. It has the same rankings in the GREEN500 list ­– sixth in the world for energy efficiency, the highest ranked in Europe and the top non-governmental system. Ignoring experimental computers and considering only true supercomputer systems with a consumption level of over 1MW, it becomes the second-best computer in the world for energy savings. A single watt of electricity enables it to perform almost twenty billion operations per second. The performance level of this computer means it can use extremely sophisticated in-house algorithms to process subsoil data. The geophysical and seismic information we collect from all over the world is sent to HPC5 for processing. Using this data, the system develops extremely in-depth subsoil models, and on the basis of these, we can determine what is hidden many kilometres below the surface: indeed, this is how we found Zohr, the largest gas field ever discovered in the Mediterranean.

HPC5. Shaping the energy of the future


Superfast alias HPC5 | Eni Tv


While the production of gas and oil continues in the energy industry's traditional geographic areas, the next frontier of exploration is shifting towards increasingly remote places, and going deeper and deeper underground. And all this is occurring while the demand for global energy calls for rapid response times. In this environment, identifying new resources and bringing them into production as fast as possible becomes a serious challenge. The use of a supercomputer like HPC5 enables us to increase the accuracy of our studies of underground rocks, reducing the margin for error in prospecting operations and decreasing time-to-market, or the time between the identification of the field and the launch of production. This also has a positive impact on sustainability , as it reduces waste, both in terms of energy and resources.

Technological challenge

HPC5 is a computing cluster, or in other words, a set of computers that work together to multiply overall performance. The power of this supercomputer is three times that of its predecessor, HPC4. To keep energy consumption to a minimum, a hybrid architecture has been selected to optimise performance: as such, HPC5 and HPC4 use GPU computation (graphic processing units - GPUs - optimised for calculating large volumes of data in parallel), and these are very energy efficient. Indeed, with just one watt of power, a GPU can carry out over 10,000 million billion mathematical operations. In addition, every single computer has two CPU sockets; HPC4 also has two sockets for graphics accelerators, while HPC5 has four sockets. In total, the machine has access to more than 3400 computing processors and 10,000 graphics cards. This type of hardware, coupled with our proprietary algorithms, enables us to produce three-dimensional models of the subsoil that lie at a depth of 10-15 km, with a surface area of hundreds of km2 and a resolution of a few dozen metres. Once the hydrocarbons have been found, our geologists again use supercomputers to model the deposits and optimise their exploitation. Equally important was the contribution to the launch of the new EST reactor, which converts heavy refining residues into high quality light products. Moreover, from a strategic point of view, the memory of this computing behemoth stores the data of all the explorations and all the fields discovered by Eni in over sixty years of history, and this provides the basis for the development of the best methods for extracting the hydrocarbons that these areas still contain.


One of the many faces of energy: Carlo - The Faces of Eni | Eni Video Channel

Energies of Tomorrow

But HPC5 and HPC4 are not just used to discover new deposits, to model existing discoveries or to improve refining, but will also be used more and more for the energies of tomorrow The two supercomputers run original programs for research into magnetic confinement fusion: development of superconducting magnets in the joint Eni-CNR research centre in Gela and the study of plasmas in the research centre in San Donato Milanese. This is where the theoretical modelling takes place of the photoactive molecules and polymers that are at the core of new technologies for capturing solar: OPV organic solar panels and LSC luminescent solar concentrators. Lastly, Eni supercomputers are used to build advanced mathematical models combining meteorological and marine information with information on the behaviour of Marenergy technologies, such as ISWEC or Power Buoy, which generate electricity from wave motion. Meanwhile, detailed weather and climate models of the Arctic on a continental scale are developed at the joint Eni-CNR research centre in Lecce – with the essential support, of course, of the computing power of our supercomputers. Finally, the supercomputer will be fundamental in the development of our artificial intelligence projects, a new line of research that we are working on with IBM.

The first time I encountered HPC, I realised that I had become part of projects that are huge - enormous - in scale.

by Carlo Fortini, telecommunications engineer

Environmental impact

HPC5 helps us to progressively improve our environmental performance, because increasing the efficiency of what we do allows us to reduce waste: in terms of energy, resources and time. In additions, 10-15% of the power provided to HPC4 is delivered by a photovoltaic system with 1MW of power, consisting of 2968 solar tracker photovoltaic modules distributed over 106 strings, part of our Progetto Italia initiative. Moreover, courtesy of its special environmentally-friendly design, the Green Data Center that houses the supercomputer enables us to save around 4500 tons of CO2 per year compared to a normal data centre. Today, for 92% of the year, the machines are cooled via the low-speed circulation of air, thanks to a system of pipes that intercepts air from the surrounding environment and filters it, before returning it cleaner than before. Accordingly, the use of air conditioning is minimal.

HPC5: a research supercomputer

We have made our HPC5 supercomputing infrastructure and molecular modelling skills freely available for coronavirus research, offering the highest quality tools and resources to the fight against this global emergency.

This collaboration is part of the European Exscalete4Cov initiative, which is bringing together leading institutions and research centres from Italy and across Europe to identify the safest and most promising drugs to tackle coronavirus. We are contributing to the project in partnership with Cineca, a non-profit research consortium that includes universities, national research centres and the Italian Ministry of Education, University and Research. Our joint team will carry out dynamic molecular simulations of viral proteins whose methods of infection are similar to Covid-19 to identify the most effective pharmaceutical compounds from a potential list of around 10,000. Following this, research will be carried out for new specific antiviral molecules through screening billions of molecular structures.

Covid-19: a challenge we must overcome together