Humanity has an innate desire to understand the world around it and, where possible, adapt nature to benefit humankind. When anthropologists first entered the cave of Lascaux in France in the 1940s, they immediately understood the ancient paintings they saw. Thousands of years earlier, their ancestors had modelled the movements of the animals they needed to survive.
The basic human need to understand, model and copy nature became one of the foundational drivers of scientific discovery. When Leonardo da Vinci drew the Vitruvian Man in the 15th century, seeking to accurately represent the proportions of the human body, he did so to try and comprehend the nature of the body's physical workings.
Understanding nature through molecular modelling has that same intention. With the discovery of chemical structure, scientists provided models of the first molecules. In 1865, at the Royal Institution in London, German organic chemist August Wilhelm von Hofmann displayed the first molecular models of methane, ethane and methyl chloride, assigning a system of colours to specific elements which remains in use today.
Arguably the most famous example of such modelling came in 1953 when Francis Crick and James Watson presented the first 3D model of DNA. They did not achieve this in isolation, adding to the work of peers such as Rosalind Franklin and Maurice Wilkins.
And it is this spirit of collaboration —building on the discoveries and attempts to understand nature that came before— that has brought molecular modelling into the modern age. Specifically, molecular modelling is now seen as a potential tool in the fight against COVID-19.