Modificare il clima su grande scala si può? L’ingegneria climatica o geoingegneria sostiene di poter affrontare l’aumento della temperatura intervenendo sul sistema climatico.
Le strategie di geoingegneria si dividono in due grandi classi: quelle che agiscono direttamente sulla causa del riscaldamento, proponendosi di modificare la radiazione solare, e quelle che agiscono sull’effetto rimuovendo l’eccesso di anidride carbonica dall’atmosfera. Gestire la radiazione solare significa schermare i raggi solari lungo tutte le frequenze luminose che arrivano sulla superficie della terra: ultravioletto, visibile e vicino infrarosso. Per far questo, si può agire sulla superficie, nella troposfera o nell’alta atmosfera oppure direttamente nello spazio fra il nostro pianeta e il sole.
Sulla superficie della terra possiamo, prima di tutto, cercare di aumentare l’albedo, ovvero la capacità di un oggetto di riflettere la luce invece di assorbirla sotto forma di calore. Mentre le strade asfaltate riflettono solo dal 3 al 20% dei raggi solari che le colpiscono, assorbendo tutto il resto della luce ricevuta per arroventare le nostre città, una strada (o anche una casa o una installazione industriale) dipinta di bianco riflette più della metà e fino al 90% della radiazione che la colpisce rimanendo relativamente fresca. Da qui l’idea del sindaco di Los Angeles, Eric Garcetti, di dipingere di bianco le strade della città, che in estate è in media 3,8 °C più calda della campagna con punte anche di +40°C.
Grazie al CoolSeal, pigmento coprente a base acquosa, in grado di legarsi all’asfalto, la strada assume un colore chiaro aumentando la sua albedo, vale a dire, la sua capacità di riflettere efficacemente i raggi solari rimandandoli in atmosfera anziché assorbirli trasformandoli in raggi infrarossi, quindi in calore. Per ottenere questo risultato bastano solo due passate di circa 50 micron l’una (più o meno lo spessore di un paio di capelli umani). perché la strada diventi bianca. Se l’asfalto passa da un colore scuro a un colore chiaro, aumenta la sua albedo, vale a dire, la sua capacità di riflettere efficacemente i raggi solari rimandandoli in atmosfera anziché assorbirli trasformandoli in raggi infrarossi, quindi in calore. L’investimento è importante, pari a circa 22 mila euro per ogni km dipinto, e rientra nel programma generale che prevede di ridurre entro il 2025 le emissioni di gas serra di Los Angeles del 45% – corrispondenti ai livelli raggiunti nel 1990. Mattoni, cemento e tegole si collocano a metà di questi due estremi, costituiti appunto dal nero dell’asfalto e dal bianco con cui è stato ricoperto a Los Angeles.
Ma non c’è bisogno di dipingere tutto di bianco, sono stati sviluppati pigmenti colorati che riflettono la maggior parte della radiazione solare pur permettendoci di vivere in un mondo a colori. Nei Laboratori Berkeley hanno sviluppato vari pigmenti, fra i quali uno rosso rubino, in grado di riflettere efficacemente la luce. Ma l’idea non è nuovissima: già 5000 anni fa, gli egiziani usavano colorare le anfore di azzurro, perché avevano scoperto che quel particolare colore (primo pigmento sintetico al mondo) riemetteva la luce come radiazione infrarossa lasciando fresco il recipiente -o la casa - che ricopre.
Per aumentare l’albedo dell’intero pianeta si sta anche ipotizzando di agire sugli oceani, disperdendovi sostanze galleggianti altamente riflettenti ma stabili e innocue per la fauna e per la flora marina. In questo campo, la soluzione migliore sarebbe… fare le bolle. Si tratterebbe di realizzare impianti fissi – o imbarcati su navi – che aspirino acqua, la mescolino con l’aria e reiniettino in mare microbollicine che riflettono la luce solare in modo più efficiente limitando l’effetto riscaldante. Tuttavia per aumentare la stabilità delle microbolle sarebbe necessario introdurre nel mare anche dei tensioattivi che comprometterebbero i delicati equilibri dell’ecosistema marino. In ogni caso le microbolle rischierebbero di togliere una significativa porzione di luce al fitoplancton che sta alla base della catena alimentare oceanica. Inoltre, in questo modo si aumenterebbe la concentrazione di ossigeno disciolto favorendo gli organismi aerobi che vivono vicino al pelo dell’acqua a scapito degli altri compromettendo l’equilibrio fra le specie viventi.
Un’altra linea di ricerca vorrebbe agire sui campi agricoli. L’idea sarebbe di modificare geneticamente le principali colture (o selezionandone varietà apposite) o, più semplicemente, cambiare dieta e passare alla coltivazione intensiva di colture di colore più chiaro. Questo sistema permetterebbe di diminuire la temperatura della superficie anche di 1 °C e sarebbe relativamente rapido da implementare. Tuttavia potrebbe comportare problemi alimentari e sociali non secondari dovuti al cambio di dieta.
Mentre nella troposfera si studia come creare nuvole artificiali che riflettano la luce prima che colpisca le acque sottostanti, nella più alta stratosfera si potrebbe attuare un’altra strategia ispirata anche in questo caso a un fenomeno naturale. Il Centro USA sulla ricerca atmosferica ha studiato come l’eruzione del vulcano Pinatubo abbia influenzato il clima mondiale almeno per un paio d’anni con l’emissione di 20 milioni di tonnellate di anidride solforosa in atmosfera. Da questo fenomeno è nata l’idea di lanciare polveri di solfuri in atmosfera usando razzi o aerei per creare nuvole in grado, secondo le stime, di eliminare l’effetto riscaldante di diverse migliaia di tonnellate di CO2 con un solo chilogrammo di solfuri. Anche in questo caso seguono diverse considerazioni: i moti convettivi dominanti tenderebbero a fare migrare gli aerosol verso i tropici, raffreddandoli, ma a spese delle zone polari, dove proseguirebbe lo scioglimento di ghiacciai e calotta polare. Inoltre, bisognerebbe considerare che la schermatura degli strati sottostanti potrebbe comportare un cambio di direzione delle correnti. Se le correnti in quota dovessero trasportare questi aerosol verso i poli, questi danneggerebbero lo strato di ozono che ci protegge dai raggi ultravioletti e la lenta ricaduta dei solfuri in mare e sui suoli avrebbe conseguenze su foreste, colture e fauna.
Avvicinandosi sempre più alla fonte di calore, i geoingegneri immaginano di bloccare parte dei raggi solari lungo il cammino dal sole alla terra mettendo in orbita un gigantesco ombrellone che rifletta altrove o assorba la radiazione incidente impedendole di andare a scaldare la nostra atmosfera. Senza rimanere al buio naturalmente. Basterebbe eliminare appena l’1,7% della radiazione solare che colpisce il nostro pianeta per bloccare l’aumento di temperatura di 2 °C. Il luogo in cui posizionare questo speciale ombrellone è quello che gli astronomi chiamano il punto lagrangiano L1: si trova proprio fra il Sole e la Terra a 1,5 milioni di km dal nostro pianeta e a 148 milioni di km dal Sole. In questo punto le forze gravitazionali prodotte dai due corpi e la forza centripeta orbitale si equilibrano esattamente. In verità, per non sconvolgere il ciclo giorno/notte di tutti gli esseri viventi, si dovrebbe ricorrere a tanti piccoli ombrelli (tra l’altro più facilmente trasportabili). La NASA ne ha già realizzato un prototipo: un disco di appena 60 cm di diametro, dello spessore di 5 micrometri e del peso di circa un grammo. Il vero problema è che bisognerebbe produrne 16 milioni di miliardi, per un peso totale di circa 20 milioni di tonnellate. In altri termini per formare una nuvola di dischi di 3,8 milioni di km2 che complessivamente bloccherebbero circa il 2% della radiazione solare che colpisce la terra, ogni giorno (per vent’anni), dovremmo lanciare un razzo da 100 tonnellate di carico. Secondo la NASA si tratterebbe di una spesa di 130 mila miliardi di dollari, 18.500 $ a testa per ogni abitante del pianeta. Una soluzione alternativa è quella di una gigantesca lente di Fresnel del diametro di 1000 km e dello spessore di pochi millimetri sempre in L1. Una volta studiato come mandare i materiali necessari per costruirla in orbita, si potrebbe deviare nello spazio l’1% dei raggi solari. In questo caso, le spese complessive sarebbero di 20 mila miliardi di dollari.
Dall’università di Strathclyde in Gran Bretagna arriva anche la proposta di deviare un asteroide in transito vicino alla terra dalla sua orbita e collocarlo in L1. Secondo i calcoli, la massa dell’asteroide attrarrebbe in quella zona polvere cosmica a sufficienza per schermare significativamente la luce del sole.
La seconda grande classe di strategie di geoingegneria consiste nel lavorare sugli effetti rimuovendo l’eccesso dell’anidride carbonica direttamente in atmosfera. Il problema principale della cattura diretta di anidride carbonica dall’aria è che è estremamente diluita: solo lo 0,04%. Anche immaginando di sviluppare reazioni filtranti che permettano di estrarre CO2 in modo efficiente, occorrerebbe comunque processare 2500 litri di aria per raccogliere un solo litro di anidride carbonica. L’energia necessaria dovremmo poi produrla con fonti rinnovabili a basso impatto di carbonio.
Una tecnica più promettente è la Bio-Energy with Carbon Capture and Storage (BECCS) anche se prima di tutto ci si dovrebbe affidare direttamente alla natura, consegnando ad alberi o piante coltivate l’onere di catturare la CO2 dall’atmosfera con la fotosintesi e utilizzarla per la loro crescita. Queste vengono poi raccolte e bruciate in modo controllato per recuperare l’anidride carbonica concentrata che si libera. A questo punto si deve trovare un modo per imprigionarla permanentemente, per esempio iniettandola dentro giacimenti petroliferi esauriti. La questione è che sarebbero necessarie ampie superfici coltivabili dedicate a questo, con il rischio di compromettere l’estensione delle colture dedicate all’alimentazione umana e animale.
In questo caso si parte sempre da biomassa derivante anche da scarti animali prodotti dagli allevamenti, scarti vegetali oppure dalla coltura di microorganismi che viene sottoposta a un processo di pirolisi; cioè si brucia ad altissima temperatura in un ambiente scarso di ossigeno producendo un carbone di legna o carbonella chiamato biochar. Se però lo usiamo come se fosse un “biocarbone” per alimentare centrali elettriche, andrebbero persi tutti i benefici ambientali del processo perché si libererebbe nuovamente la CO2 immagazzinata dalla natura con tanta fatica. Molto meglio distribuirlo sui terreni eccessivamente acidiper migliorarne la fertilità. È un materiale poroso in grado di assorbire fertilizzanti e rilasciarli in modo controllato migliorando la resa delle coltivazioni agricole. In questo modo, si può catturare e bloccare efficacemente CO2 intrappolandola per migliaia di anni in suoli ad alto contenuto di carbonio. Questi prendono il nome portoghese di terra preta perché assomigliano ai terreni che gli abitanti precolombiani dell’Amazzonia rendevano ancora più fertili distribuendovi proprio carbone di legna.
Un’alternativa ai metodi prima descritti mette in gioco il mare per catturare CO2. Le tecniche di fertilizzazione oceanica prevedono di distribuire sulla superficie degli oceani delle sostanze che stimolino lo sviluppo di fitoplancton. La sua crescita è limitata principalmente dalla scarsità di ferro nelle acque. Per questo, se si sparge ferro finemente suddiviso sulla superficie, se ne stimola la crescita con conseguente aumento del consumo di CO2 atmosferica. In base alla concentrazione di nutrienti nei vari oceani, si può aggiungere al ferro anche un mix di altri nutrienti, come il fosforo oppure l’azoto. Le ceneri vulcaniche, avendo una composizione idonea, rappresenterebbero un’alternativa interessante.
A differenza delle tecnologie di mitigazione del cambiamento climatico che vengono applicate in modo puntuale, quelle di geoingegneria possono funzionare solo se applicate a livello planetario. Al momento sono stati condotti esperimenti molto localizzati dai risultati piuttosto contrastanti e bisogna considerare che la Terra è un unico ecosistema che tende a compensare eventuali sbilanciamenti (dovuti agli esperimenti che possono a loro volta essere influenzati), cercare di alterare la fittissima rete planetaria di equilibri interconnessi, potrebbe forse risultare molto rischioso. Mentre il mondo scientifico continua a cercare strade percorribili, tra ambiziose alternative e tecniche di mitigazione locale, ognuno di noi è chiamato a fare la propria parte: preferendo una passeggiata o un giro in bicicletta per brevi spostamenti, non esagerando con condizionatori e riscaldamento, scegliendo elettrodomestici a basso consumo energetico.
Questo sito web utilizza i cookie
Questo sito utilizza cookie di profilazione, al fine di inviarti pubblicità e offrirti servizi in linea con le preferenze da te manifestate nel corso della navigazione in rete. Per ulteriori dettagli visita la nostra cookie policy.
THIS WEBSITE (AND THE INFORMATION CONTAINED HEREIN) DOES NOT CONTAIN OR CONSTITUTE AN OFFER OF SECURITIES FOR SALE, OR SOLICITATION OF AN OFFER TO PURCHASE SECURITIES OR IS NOT FOR RELEASE, PUBLICATION OR DISTRIBUTION, DIRECTLY OR INDIRECTLY, IN OR INTO THE UNITED STATES (INCLUDING ITS TERRITORIES AND POSSESSIONS, ANY STATE OF THE UNITED STATES AND THE DISTRICT OF COLUMBIA) OR FOR THE ACCOUNT OR BENEFIT OF ANY U.S. PERSON AS THAT TERM IS DEFINED IN THE SECURITIES ACT (A "U.S. PERSON"), AUSTRALIA, CANADA, JAPAN OR SOUTH AFRICA OR ANY OTHER JURISDICTION WHERE SUCH AN OFFER OR SOLICITATION WOULD REQUIRE THE APPROVAL OF LOCAL AUTHORITIES OR OTHERWISE BE UNLAWFUL (THE "OTHER COUNTRIES"). THE SECURITIES REFERRED TO HEREIN HAVE NOT BEEN AND WILL NOT BE REGISTERED UNDER THE U.S. SECURITIES ACT OF 1933, AS AMENDED (THE "SECURITIES ACT"), OR PURSUANT TO THE CORRESPONDING REGULATIONS IN FORCE IN AUSTRALIA, CANADA, JAPAN, SOUTH AFRICA OR THE “OTHER COUNTRIES” AND MAY NOT BE OFFERED OR SOLD IN THE UNITED STATES OR TO A U.S. PERSON UNLESS THE SECURITIES ARE REGISTERED UNDER THE SECURITIES ACT, OR AN EXEMPTION FROM THE REGISTRATION REQUIREMENTS OF THE SECURITIES ACT IS AVAILABLE. NO PUBLIC OFFERING OF SUCH SECURITIES IS INTENDED TO BE MADE IN THE UNITED STATES, AUSTRALIA, CANADA, JAPAN OR IN THE “OTHER COUNTRIES.”
In any Member State of the European Economic Area ("EEA"), the information contained in this website is only directed at and may only be communicated to persons who are "qualified investors" ("Qualified Investors") within the meaning of Article 2(e) of Regulation (EU) 2017/1129 (the "Prospectus Regulation").
The information to which this website gives access is directed only at persons (i) who are persons falling within Article 49(2)(a) to (d) ("high net worth companies, unincorporated associations etc.") of the Financial Services and Markets Act 2000 (Financial Promotion) Order 2005 (the "Order") or (ii) who have professional experience in matters relating to investments falling within Article 19(5) of the Order or (iii) to whom it may otherwise lawfully be communicated (all such persons together being referred to as "relevant persons"). Any investment or investment activity to which this communication relates is only available to relevant persons and will be engaged in only with relevant persons, or in the EEA, with Qualified Investors. Any person who is not a relevant person, a Qualified Investor or otherwise permitted under applicable law or regulation to access the information, should not act or rely on the information contained herein.
Confirmation of Understanding and Acceptance of Disclaimer
These materials are for informational purposes only and are not directed to, nor are they intended for, access by persons located or resident in the United States, Australia, Canada, Japan or South Africa or any of the Other Countries. I certify that:
I am not resident of, or located in, the United States, Australia, Canada, Japan or South Africa or any of the Other Countries or I am not a U.S. Person; or
If I am a resident of, or located in, the EEA, I am a Qualified Investor within the meaning of Article 2(e) of the Prospectus Regulation; or
If I am a resident of, or located in, the United Kingdom, I am a Qualified Investor and a relevant person.
I have read and understood the disclaimer set out above. I understand that it may affect my rights. I agree to be bound by its terms and I am permitted under applicable law and regulations to proceed to the following parts of this website.
WARNING: the above certification constitutes a "self-certification" pursuant to Decree of the President of the Italian Republic No. 445 of 28 December 2000. False certifications are punishable by law.